ホーム > 矢田 和善/ Yata, Kazuyoshi
矢田 和善
Yata, Kazuyoshi
数理物質系 , 教授 Institute of Pure and Applied Sciences , Professor
オープンアクセス版の論文は「つくばリポジトリ」で読むことができます。
-
1.
Automatic Sparse PCA for High-Dimensional Data
Yata, Kazuyoshi; Aoshima, Makoto
Statistica Sinica (2025) Semantic Scholar
-
2.
Noise Reduced Common PCA for High-Dimensional, Low-Sample Size Multi-View Data
Hasegawa, Hiroki; Kawamura, Homura; Shin, Ryota; Yata, Kazuyoshi (+1 著者) Kunimatsu, Jun
Proceedings of the 6th International Conference on Statistics: Theory and Applications (2024)
-
3.
High Dimensional Statistical Analysis and its Application to an ALMA Map of NGC 253
Takeuchi; Tsutomu T.; Yata, Kazuyoshi; Egashira, Kento (+5 著者) Kono, Kai T.
The Astrophysical Journal Supplement Series 271: 44 (2024) Semantic Scholar
-
4.
Asymptotic Properties of Hierarchical Clustering in High-Dimensional Settings
Egashira, Kento; Yata, Kazuyoshi; Aoshima, Makoto
Journal of Multivariate Analysis 199: 105251 (2024) Semantic Scholar
-
5.
Test for High-Dimensional Outliers with Principal Component Analysis
Nakayama, Yugo; Yata, Kazuyoshi; Aoshima, Makoto
Japanese Journal of Statistics and Data Science Epub: (2024) Semantic Scholar
-
6.
階層的クラスタリングの高次元漸近的性質について
江頭健斗; 矢田, 和善; 青嶋誠
数理解析研究所講究録 2221: 30 (2022)
-
7.
Consistency of the objective general index in high-dimensional settings
Takuma, Bando; Tomonari, Sei; Yata, Kazuyoshi
Journal of Multivariate Analysis 189: 104938 (2022) Semantic Scholar
-
8.
Geometric classifiers for high-dimensional noisy data (Editor's invited paper)
Ishii, Aki; Yata, Kazuyoshi; Aoshima, Makoto
Special Issue: 50th Anniversary Jubilee Edition, Journal of Multivariate Analysis 188: 104850 (2022)
-
9.
Geometric classifiers for high-dimensional noisy data (Editor's invited paper)
Ishii, Aki; Yata, Kazuyoshi; Aoshima, Makoto
Special Issue: 50th Anniversary Jubilee Edition, Journal of Multivariate Analysis 188: 104850 (2022) Semantic Scholar
-
10.
Clustering by principal component analysis with Gaussian kernel in high-dimension, low-sample-size settings
Nakayama, Yugo; Yata, Kazuyoshi; Aoshima, Makoto
JOURNAL OF MULTIVARIATE ANALYSIS 185: 104779 (2021) Semantic Scholar
-
11.
Asymptotic properties of distance-weighted discrimination and its bias correction for high-dimension, low-sample-size data
Egashira, Kento; Yata, Kazuyoshi; Aoshima, Makoto
JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE 4: 821 (2021) Semantic Scholar
-
12.
Hypothesis tests for high-dimensional covariance structures
Ishii, Aki; Yata, Kazuyoshi; Aoshima, Makoto
Annals of the Institute of Statistical Mathematics 73: 599 - 622 (2021) Semantic Scholar
-
13.
Hypothesis tests for high-dimensional covariance structures
Ishii, Aki; Yata, Kazuyoshi; Aoshima, Makoto
Annals of the Institute of Statistical Mathematics 73: 599 (2021) Semantic Scholar
-
14.
論説:高次元小標本における統計的仮説検定
青嶋, 誠; 石井, 晶; 矢田和善
数学 73: 360 (2021)
-
15.
高次元におけるDistanceWeighted Discriminationについて
江頭健斗; 矢田和善; 青嶋誠
数理解析研究所講究録 1 (2020)
-
16.
High-dimensional covariance matrix estimation under the SSE model
Konishi, Keisuke; Yata, Kazuyoshi; Aoshima, Makoto
数理解析研究所講究録 11 (2020)
-
17.
Tests for high-dimensional covariance structures under the non-strongly spiked eigenvalue model
Ishii, Aki; Yata, Kazuyoshi; Aoshima, Makoto
数理解析研究所講究録 21 (2020)
-
18.
単一強スパイク固有値モデルにおける高次元平均ベクトルの2標本検定
石井晶; 矢田和善; 青嶋誠
応用統計学 49: 109 (2020)
-
19.
Bias-corrected support vector machine with Gaussian kernel in high-dimension, low-sample-size settings
Nakayama, Yugo; Yata, Kazuyoshi; Aoshima, Makoto
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS 72: 1257 (2020) Semantic Scholar
-
20.
Geometric consistency of principal component scores for high-dimensional mixture models and its application,
Yata, Kazuyoshi; Aoshima, Makoto
Scandinavian Journal of Statistics 47: 899 - 921 (2020) Semantic Scholar
-
1.
高次元の統計学
青嶋, 誠; 矢田, 和善
共立出版 2019年4月 (ISBN: 9784320112636)
-
1.
Asymptotic properties of high-dimensional kernel PCA and its applications
Nakayama, Yugo; Yata, Kazuyoshi; Aoshima, Makoto
International Symposium on New Developments of Theories and Methodologies for Large Complex Data 2021年11月6日 招待有り
-
2.
Sparse PCA for high-dimensional data based on the noise-reduction methodology and its application
Yata, Kazuyoshi; Aoshima, Makoto
The 63rd ISI World Statistics Congress 2021年7月14日 招待有り
-
3.
Clustering by kernel PCA with Gaussian kernel and tuning for high-dimensional data
Nakayama, Yugo; Yata, Kazuyoshi; Aoshima, Makoto
The 4th International Conference on Econometrics and Statistics 2021年6月26日 招待有り
-
4.
Tests for covariance structures in high-dimensional data
Yata, Kazuyoshi; Ishii, Aki; Aoshima, Makoto
The 4th International Conference on Econometrics and Statistics 2021年6月26日 招待有り
-
5.
High-dimensional classifiers under the strongly spiked eigenvalue model
Ishii, Aki; Yata, Kazuyoshi; Aoshima, Makoto
The 4th International Conference on Econometrics and Statistics 2021年6月25日 招待有り
-
6.
High-dimensional quadratic classifiers under the strongly spiked eigenvalue model
Ishii, Aki; Yata, Kazuyoshi; Aoshima, Makoto
IISA 2021 Conference 2021年5月21日 招待有り
-
7.
高次元におけるカーネル主成分分析の漸近的性質と異常値の検出への応用
中山 優吾; 矢田 和善; 青嶋 誠
日本数学会年度年会 2021年3月16日
-
8.
距離加重判別分析の高次元漸近的性質
江頭 健斗; 矢田 和善; 青嶋 誠
日本数学会年度年会 2021年3月16日
-
9.
高次元固有ベクトルの検定について
石井 晶; 矢田, 和善; 青嶋 誠
日本数学会秋季総合分科会 2020年9月24日
-
10.
Clustering by kernel principal component analysis for high-dimensional data
中山 優吾; 矢田 和善; 青嶋 誠
日本数学会秋季総合分科会 2020年9月24日
-
11.
高次元データにおける距離加重判別分析の漸近的性質とバイアス補正
江頭 健斗; 矢田 和善; 青嶋 誠
統計関連学会連合大会 2020年9月11日
-
12.
高次元小標本における異常値の検出
中山 優吾; 矢田 和善; 青嶋 誠
統計関連学会連合大会 2020年9月10日
-
13.
Tests of high-dimensional correlation matrices under the strongly spiked eigenvalue model
石井 晶; 矢田 和善; 青嶋 誠
統計関連学会連合大会 2020年9月10日
-
14.
高次元スパースPCAの一致性とその応用
矢田 和善; 青嶋 誠
統計関連学会連合大会 2020年9月10日
-
15.
Tests for high-dimensiomal covariance structures under the SSE model
Ishii, Aki; Yata, Kazuyoshi; Aoshima, Makoto
International Symposium on Theories and Methodologies for Large Complex Data 2019年11月21日 招待有り
-
16.
Inference on mean vectors for high-dimensional data with the strongly spiked eigenstructure
Ishii, Aki; Yata, Kazuyoshi; Aoshima, Makoto
The 3rd International Conference on Econometrics and Statistics 2019年6月26日 招待有り
-
17.
A high-dimensional quadratic classifier by data transformation for strongly spiked eigenvalue models
Yata, Kazuyoshi; Ishii, Aki; Aoshima, Makoto
The 3rd International Conference on Econometrics and Statistics 2019年6月26日 招待有り
-
18.
A high-dimensional quadratic classifier under the strongly spiked eigenvalue model
Yata, Kazuyoshi; Ishii, Aki; Aoshima, Makoto
The 14th Workshop on Stochastic Models, Statistics and their Application 2019年3月6日 招待有り
-
19.
Tests of High-Dimensional Mean Vectors and Its Application Under the SSE Model
Ishii, Aki; Yata, Kazuyoshi; Aoshima, Makoto
Waseda International Symposium “Introduction of General Causality to Various Data & its Applications” 2019年2月26日 招待有り
-
20.
Tests of high-dimensional mean vectors under the SSE model
Ishii, Aki; Yata, Kazuyoshi; Aoshima, Makoto
International Symposium on Statistical Theory and Methodology for Large Complex Data 2018年11月26日 招待有り
知財情報はまだありません。
759 total views