ホーム > 矢田 和善/ Yata, Kazuyoshi
矢田 和善
Yata, Kazuyoshi
数理物質系 , 教授 Institute of Pure and Applied Sciences , Professor
オープンアクセス版の論文は「つくばリポジトリ」で読むことができます。
-
21.
Geometric consistency of principal component scores for high-dimensional mixture models and its application,
Yata, Kazuyoshi; Aoshima, Makoto
Scandinavian Journal of Statistics 47: 899 - 921 (2020) Semantic Scholar
-
22.
Bias-corrected support vector machine with Gaussian kernel in high-dimension, low-sample-size settings
Nakayama, Yugo; Yata, Kazuyoshi; Aoshima, Makoto
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS 72: 1257 (2020) Semantic Scholar
-
23.
A quadratic classifier for high-dimension, low-sample-size data under the strongly spiked eigenvalue model
Ishii, Aki; Yata, Kazuyoshi; Aoshima, Makoto
Proceedings of the 14th Workshop on Stochastic Models, Statistics and their Application 131 (2019) Semantic Scholar
-
24.
High-Dimensional Quadratic Classifiers in Non-sparse Settings
Aoshima, Makoto; Yata, Kazuyoshi
METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY 21: 663 (2019) Semantic Scholar
-
25.
Distance-based classifier by data transformation for high-dimension, strongly spiked eigenvalue models
Aoshima, Makoto; Yata, Kazuyoshi
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS 71: 473 (2019) Semantic Scholar
-
26.
Inference on high-dimensional mean vectors under the strongly spiked eigenvalue model
Isii, Aki; Yata, Kazuyoshi; Aoshima, Makoto
Japanese Journal of Statistics and Data Science 2: 105 - 128 (2019) Semantic Scholar
-
27.
Equality tests of high-dimensional covariance matrices under the strongly spiked eigenvalue model
Ishii, Aki; Yata, Kazuyoshi; Aoshima, Makoto
Journal of Statistical Planning and Inference 202: 99 - 111 (2019) Semantic Scholar
-
28.
A test of sphericity for high-dimensional data and its application for detection of divergently spiked noise
Kazuyoshi Yata; Makoto Aoshima; Yugo Nakayama
SEQUENTIAL ANALYSIS-DESIGN METHODS AND APPLICATIONS 37: 397 (2018) Semantic Scholar
-
29.
Two-sample tests for high-dimension, strongly spiked eigenvalue models
Makoto Aoshima; Kazuyoshi Yata
Statistica Sinica 28: 43 (2018) Semantic Scholar
-
30.
Statistical inference for high-dimension, low-sample-size data
Aoshima, Makoto; Yata, Kazuyoshi
American Mathematical Society, Sugaku Expositions 30: 137 (2017)
-
31.
高次元小標本におけるサポートベクターマシンの一致性について (Statistical Inference on Divergence Measures and Its Related Topics)
中山, 優吾; 矢田, 和善; 青嶋, 誠
RIMS Kokyuroku 1999: 17 (2016)
-
32.
Estimation of a signal matrix for high-dimensional non-Gaussian data (Statistical Inference on Divergence Measures and Its Related Topics)
矢田, 和善; 青嶋, 誠
RIMS Kokyuroku 1999: 36 (2016)
-
33.
Geometric Classifier for Multiclass, High-Dimensional Data
Makoto Aoshima; Kazuyoshi Yata
SEQUENTIAL ANALYSIS-DESIGN METHODS AND APPLICATIONS 34: 279 (2015) Semantic Scholar
-
34.
Reconstruction of a signal matrix for high-dimension, low-sample-size data (New Advances in Statistical Inference and Its Related Topics)
村山, 航; 矢田, 和善; 青嶋, 誠
RIMS Kokyuroku 1954: 23 (2015)
-
35.
拡張クロスデータ行列法と共分散行列関数の不偏推定
矢田, 和善; 青嶋, 誠
RIMS Kokyuroku 1954: 51 (2015)
-
36.
高次元小標本における混合データの幾何学的表現とクラスター分析への応用 (Asymptotic Statistics and Its Related Topics)
矢田, 和善; 青嶋, 誠
RIMS Kokyuroku 1910: 125 (2014)
-
37.
高次元データの統計的方法論(日本統計学会研究業績賞受賞者特別寄稿論文)
青嶋, 誠; 矢田, 和善
日本統計学会誌. シリーズJ 43: 123 (2013)
-
38.
Inference on High-Dimensional Mean Vectors with Fewer Observations Than the Dimension
Kazuyoshi Yata; Makoto Aoshima
METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY 14: 459 (2012) Semantic Scholar
-
39.
Asymptotic properties of a distance-based classifier for high-dimensional data (A New Perspective to Statistical Models and Its Related Topics)
矢田, 和善; 青嶋, 誠
RIMS Kokyuroku 1804: 53 (2012)
-
40.
Note on classification for high-dimensional data (A New Perspective to Statistical Models and Its Related Topics)
永橋, 幸大; 矢田, 和善; 青嶋, 誠
RIMS Kokyuroku 1804: 40 (2012)
-
1.
高次元の統計学
青嶋, 誠; 矢田, 和善
共立出版 2019年4月 (ISBN: 9784320112636)
-
1.
Asymptotic properties of high-dimensional kernel PCA and its applications
Nakayama, Yugo; Yata, Kazuyoshi; Aoshima, Makoto
International Symposium on New Developments of Theories and Methodologies for Large Complex Data 2021年11月6日 招待有り
-
2.
Sparse PCA for high-dimensional data based on the noise-reduction methodology and its application
Yata, Kazuyoshi; Aoshima, Makoto
The 63rd ISI World Statistics Congress 2021年7月14日 招待有り
-
3.
Clustering by kernel PCA with Gaussian kernel and tuning for high-dimensional data
Nakayama, Yugo; Yata, Kazuyoshi; Aoshima, Makoto
The 4th International Conference on Econometrics and Statistics 2021年6月26日 招待有り
-
4.
Tests for covariance structures in high-dimensional data
Yata, Kazuyoshi; Ishii, Aki; Aoshima, Makoto
The 4th International Conference on Econometrics and Statistics 2021年6月26日 招待有り
-
5.
High-dimensional classifiers under the strongly spiked eigenvalue model
Ishii, Aki; Yata, Kazuyoshi; Aoshima, Makoto
The 4th International Conference on Econometrics and Statistics 2021年6月25日 招待有り
-
6.
High-dimensional quadratic classifiers under the strongly spiked eigenvalue model
Ishii, Aki; Yata, Kazuyoshi; Aoshima, Makoto
IISA 2021 Conference 2021年5月21日 招待有り
-
7.
高次元におけるカーネル主成分分析の漸近的性質と異常値の検出への応用
中山 優吾; 矢田 和善; 青嶋 誠
日本数学会年度年会 2021年3月16日
-
8.
距離加重判別分析の高次元漸近的性質
江頭 健斗; 矢田 和善; 青嶋 誠
日本数学会年度年会 2021年3月16日
-
9.
高次元固有ベクトルの検定について
石井 晶; 矢田, 和善; 青嶋 誠
日本数学会秋季総合分科会 2020年9月24日
-
10.
Clustering by kernel principal component analysis for high-dimensional data
中山 優吾; 矢田 和善; 青嶋 誠
日本数学会秋季総合分科会 2020年9月24日
-
11.
高次元データにおける距離加重判別分析の漸近的性質とバイアス補正
江頭 健斗; 矢田 和善; 青嶋 誠
統計関連学会連合大会 2020年9月11日
-
12.
高次元小標本における異常値の検出
中山 優吾; 矢田 和善; 青嶋 誠
統計関連学会連合大会 2020年9月10日
-
13.
Tests of high-dimensional correlation matrices under the strongly spiked eigenvalue model
石井 晶; 矢田 和善; 青嶋 誠
統計関連学会連合大会 2020年9月10日
-
14.
高次元スパースPCAの一致性とその応用
矢田 和善; 青嶋 誠
統計関連学会連合大会 2020年9月10日
-
15.
Tests for high-dimensiomal covariance structures under the SSE model
Ishii, Aki; Yata, Kazuyoshi; Aoshima, Makoto
International Symposium on Theories and Methodologies for Large Complex Data 2019年11月21日 招待有り
-
16.
Inference on mean vectors for high-dimensional data with the strongly spiked eigenstructure
Ishii, Aki; Yata, Kazuyoshi; Aoshima, Makoto
The 3rd International Conference on Econometrics and Statistics 2019年6月26日 招待有り
-
17.
A high-dimensional quadratic classifier by data transformation for strongly spiked eigenvalue models
Yata, Kazuyoshi; Ishii, Aki; Aoshima, Makoto
The 3rd International Conference on Econometrics and Statistics 2019年6月26日 招待有り
-
18.
A high-dimensional quadratic classifier under the strongly spiked eigenvalue model
Yata, Kazuyoshi; Ishii, Aki; Aoshima, Makoto
The 14th Workshop on Stochastic Models, Statistics and their Application 2019年3月6日 招待有り
-
19.
Tests of High-Dimensional Mean Vectors and Its Application Under the SSE Model
Ishii, Aki; Yata, Kazuyoshi; Aoshima, Makoto
Waseda International Symposium “Introduction of General Causality to Various Data & its Applications” 2019年2月26日 招待有り
-
20.
Tests of high-dimensional mean vectors under the SSE model
Ishii, Aki; Yata, Kazuyoshi; Aoshima, Makoto
International Symposium on Statistical Theory and Methodology for Large Complex Data 2018年11月26日 招待有り
-
1. 2024-22378: スクリーニング装置
矢田, 和善
962 total views