ホーム > 矢田 和善/ Yata, Kazuyoshi
矢田 和善
Yata, Kazuyoshi
数理物質系 , 教授 Institute of Pure and Applied Sciences , Professor
オープンアクセス版の論文は「つくばリポジトリ」で読むことができます。
-
41.
Note on robust model selection by density power divergence in a contaminated regression model (Statistical Information in Inference and Its Related Topics)
矢田, 和善; 青嶋, 誠; 小林, 裕子
数理解析研究所講究録 1758: 150 (2011)
-
42.
Effective methodologies for statistical inference on microarray studies
M., Aoshima; K.Yata; 矢田, 和善
Prostate Cancer-From Bench to Bedside 13 (2011)
-
43.
Authors' response to discussions of ``Two-stage procedures for high-dimensional data"
M., Aoshima; K.Yata; 矢田, 和善
Seq. Anal. 30: 432-440 (2011)
-
44.
Two-stage procedures for high-dimensional data (Editor's special invited paper)
M., Aoshima; K., Yata
Seq. Anal. 30: 356-399 (2011)
-
45.
Effective PCA for high-dimension, low-sample-size data with singular value decomposition of cross data matrix
Kazuyoshi Yata; Makoto Aoshima
JOURNAL OF MULTIVARIATE ANALYSIS 101: 2060 (2010) Semantic Scholar
-
46.
Effective methodologies for high-dimension, low sample size data (Statistical experiment and its related topics--RIMS共同研究報告集)
矢田, 和善
RIMS Kokyuroku 1703: 180 (2010)
-
47.
Note on robust estimation and model selection in a contaminated mixture model (Statistical experiment and its related topics--RIMS共同研究報告集)
小林, 裕子; 矢田, 和善; 青嶋, 誠
RIMS Kokyuroku 1703: 159 (2010)
-
48.
Asymptotic second-order consistency for two-stage estimation methodologies and its applications
Makoto Aoshima; Kazuyoshi Yata
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS 62: 571 (2010) Semantic Scholar
-
49.
Effective two-stage estimation for a linear function of high-dimensional Gaussian means
K., Yata
Seq. Anal. 29: 463-482 (2010)
-
50.
Intrinsic dimensionality estimation of high-dimension, low sample size data with D-Asymptotics
Kazuyoshi Yata; Makoto Aoshima
Communications in Statistics - Theory and Methods 39: 1511 (2010) Semantic Scholar
-
51.
Double shrink methodologies to determine the sample size via covariance structures
Kanyoshi Yata; Makoto Aoshima
JOURNAL OF STATISTICAL PLANNING AND INFERENCE 139: 81 (2009) Semantic Scholar
-
52.
PCA consistency for non-Gaussian data in high dimension, low sample size context
K., Yata; M., Aoshima
Commun. Statist.-Theory Meth. 38: 2634-2652 (2009)
-
53.
Two-stage selection of the best signal-to-noise ratio with related approximations
M., Aoshima; N; Mukhopadhyay; K., Yata
Calcutta Statist. Assoc. Bull. 61: 61-86 (2009)
-
54.
PCA Consistency for Non-Gaussian Data in High Dimension, Low Sample Size Context
Kazuyoshi Yata; Makoto Aoshima
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS 38: 2634 (2009) Semantic Scholar
-
55.
高次元小標本における固有値の推定とその応用 (統計的推測へのベイズ的アプローチとそれに関連する話題)
矢田, 和善; 青嶋, 誠
RIMS Kokyuroku 1621: 112 (2009)
-
56.
Note on estimating the intrinsic dimension of high dimension, low sample size data (種々のモデルの統計的解析--RIMS共同研究報告集)
矢田, 和善; 青嶋, 誠
RIMS Kokyuroku 1603: 130 (2008)
-
57.
Two-stage equivalence tests that control both size and power
K., Yata
Seq. Anal. 27: 185-200 (2008)
-
58.
Asymptotic Second-Order Consistency For Fixed-Size Estimation and Its Applications(Statistical Decision for Multiple Comparison and Its Related Topics)
矢田, 和善; 青嶋, 誠
RIMS Kokyuroku 1560: 80 (2007)
-
1.
高次元の統計学
青嶋, 誠; 矢田, 和善
共立出版 2019年4月 (ISBN: 9784320112636)
-
1.
Asymptotic properties of high-dimensional kernel PCA and its applications
Nakayama, Yugo; Yata, Kazuyoshi; Aoshima, Makoto
International Symposium on New Developments of Theories and Methodologies for Large Complex Data 2021年11月6日 招待有り
-
2.
Sparse PCA for high-dimensional data based on the noise-reduction methodology and its application
Yata, Kazuyoshi; Aoshima, Makoto
The 63rd ISI World Statistics Congress 2021年7月14日 招待有り
-
3.
Clustering by kernel PCA with Gaussian kernel and tuning for high-dimensional data
Nakayama, Yugo; Yata, Kazuyoshi; Aoshima, Makoto
The 4th International Conference on Econometrics and Statistics 2021年6月26日 招待有り
-
4.
Tests for covariance structures in high-dimensional data
Yata, Kazuyoshi; Ishii, Aki; Aoshima, Makoto
The 4th International Conference on Econometrics and Statistics 2021年6月26日 招待有り
-
5.
High-dimensional classifiers under the strongly spiked eigenvalue model
Ishii, Aki; Yata, Kazuyoshi; Aoshima, Makoto
The 4th International Conference on Econometrics and Statistics 2021年6月25日 招待有り
-
6.
High-dimensional quadratic classifiers under the strongly spiked eigenvalue model
Ishii, Aki; Yata, Kazuyoshi; Aoshima, Makoto
IISA 2021 Conference 2021年5月21日 招待有り
-
7.
高次元におけるカーネル主成分分析の漸近的性質と異常値の検出への応用
中山 優吾; 矢田 和善; 青嶋 誠
日本数学会年度年会 2021年3月16日
-
8.
距離加重判別分析の高次元漸近的性質
江頭 健斗; 矢田 和善; 青嶋 誠
日本数学会年度年会 2021年3月16日
-
9.
高次元固有ベクトルの検定について
石井 晶; 矢田, 和善; 青嶋 誠
日本数学会秋季総合分科会 2020年9月24日
-
10.
Clustering by kernel principal component analysis for high-dimensional data
中山 優吾; 矢田 和善; 青嶋 誠
日本数学会秋季総合分科会 2020年9月24日
-
11.
高次元データにおける距離加重判別分析の漸近的性質とバイアス補正
江頭 健斗; 矢田 和善; 青嶋 誠
統計関連学会連合大会 2020年9月11日
-
12.
高次元小標本における異常値の検出
中山 優吾; 矢田 和善; 青嶋 誠
統計関連学会連合大会 2020年9月10日
-
13.
Tests of high-dimensional correlation matrices under the strongly spiked eigenvalue model
石井 晶; 矢田 和善; 青嶋 誠
統計関連学会連合大会 2020年9月10日
-
14.
高次元スパースPCAの一致性とその応用
矢田 和善; 青嶋 誠
統計関連学会連合大会 2020年9月10日
-
15.
Tests for high-dimensiomal covariance structures under the SSE model
Ishii, Aki; Yata, Kazuyoshi; Aoshima, Makoto
International Symposium on Theories and Methodologies for Large Complex Data 2019年11月21日 招待有り
-
16.
Inference on mean vectors for high-dimensional data with the strongly spiked eigenstructure
Ishii, Aki; Yata, Kazuyoshi; Aoshima, Makoto
The 3rd International Conference on Econometrics and Statistics 2019年6月26日 招待有り
-
17.
A high-dimensional quadratic classifier by data transformation for strongly spiked eigenvalue models
Yata, Kazuyoshi; Ishii, Aki; Aoshima, Makoto
The 3rd International Conference on Econometrics and Statistics 2019年6月26日 招待有り
-
18.
A high-dimensional quadratic classifier under the strongly spiked eigenvalue model
Yata, Kazuyoshi; Ishii, Aki; Aoshima, Makoto
The 14th Workshop on Stochastic Models, Statistics and their Application 2019年3月6日 招待有り
-
19.
Tests of High-Dimensional Mean Vectors and Its Application Under the SSE Model
Ishii, Aki; Yata, Kazuyoshi; Aoshima, Makoto
Waseda International Symposium “Introduction of General Causality to Various Data & its Applications” 2019年2月26日 招待有り
-
20.
Tests of high-dimensional mean vectors under the SSE model
Ishii, Aki; Yata, Kazuyoshi; Aoshima, Makoto
International Symposium on Statistical Theory and Methodology for Large Complex Data 2018年11月26日 招待有り
知財情報はまだありません。
762 total views