ホーム > 矢田 和善/ Yata, Kazuyoshi
矢田 和善
Yata, Kazuyoshi
数理物質系 , 教授 Institute of Pure and Applied Sciences , Professor
オープンアクセス版の論文は「つくばリポジトリ」で読むことができます。
-
1.
Automatic Sparse PCA for High-Dimensional Data
Yata, Kazuyoshi; Aoshima, Makoto
Statistica Sinica 35: 1069 (2025) Semantic Scholar
-
2.
Proposing a Low-Rank Approximation Method with Mathematical Guarantees for High-Dimensional Tensor Data
HASEGAWA, Hiroki; YATA, Kazuyoshi; OKADA, Yukihiko; KUNIMATSU, Jun
Prceedings of 2024 IEEE International Conference on Big Data (BigData) 34 (2024)
-
3.
Noise Reduced Common PCA for High-Dimensional, Low-Sample Size Multi-View Data
Hasegawa, Hiroki; Kawamura, Homura; Shin, Ryota; Yata, Kazuyoshi (+1 著者) Kunimatsu, Jun
Proceedings of the 6th International Conference on Statistics: Theory and Applications (2024)
-
4.
高次元統計解析で探る銀河の分子ガスの物理状態と天文学への展望
青嶋, 誠; 矢田和善
統計数理 72: 273 (2024)
-
5.
High Dimensional Statistical Analysis and its Application to an ALMA Map of NGC 253
Takeuchi; Tsutomu T.; Yata, Kazuyoshi; Egashira, Kento (+5 著者) Kono, Kai T.
The Astrophysical Journal Supplement Series 271: 44 (2024) Semantic Scholar
-
6.
Asymptotic Properties of Hierarchical Clustering in High-Dimensional Settings
Egashira, Kento; Yata, Kazuyoshi; Aoshima, Makoto
JOURNAL OF MULTIVARIATE ANALYSIS 199: 105251 (2024) Semantic Scholar
-
7.
Test for High-Dimensional Outliers with Principal Component Analysis
Nakayama, Yugo; Yata, Kazuyoshi; Aoshima, Makoto
Japanese Journal of Statistics and Data Science Epub: (2024) Semantic Scholar
-
8.
階層的クラスタリングの高次元漸近的性質について
江頭健斗; 矢田, 和善; 青嶋誠
数理解析研究所講究録 2221: 30 (2022)
-
9.
Consistency of the objective general index in high-dimensional settings
Takuma, Bando; Tomonari, Sei; Yata, Kazuyoshi
Journal of Multivariate Analysis 189: 104938 (2022) Semantic Scholar
-
10.
Geometric classifiers for high-dimensional noisy data (Editor's invited paper)
Ishii, Aki; Yata, Kazuyoshi; Aoshima, Makoto
Special Issue: 50th Anniversary Jubilee Edition, Journal of Multivariate Analysis 188: 104850 (2022)
-
11.
Geometric classifiers for high-dimensional noisy data (Editor's invited paper)
Ishii, Aki; Yata, Kazuyoshi; Aoshima, Makoto
Special Issue: 50th Anniversary Jubilee Edition, Journal of Multivariate Analysis 188: 104850 (2022) Semantic Scholar
-
12.
Clustering by principal component analysis with Gaussian kernel in high-dimension, low-sample-size settings
Nakayama, Yugo; Yata, Kazuyoshi; Aoshima, Makoto
JOURNAL OF MULTIVARIATE ANALYSIS 185: 104779 (2021) Semantic Scholar
-
13.
Asymptotic properties of distance-weighted discrimination and its bias correction for high-dimension, low-sample-size data
Egashira, Kento; Yata, Kazuyoshi; Aoshima, Makoto
JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE 4: 821 (2021) Semantic Scholar
-
14.
Hypothesis tests for high-dimensional covariance structures
Ishii, Aki; Yata, Kazuyoshi; Aoshima, Makoto
Annals of the Institute of Statistical Mathematics 73: 599 (2021) Semantic Scholar
-
15.
Hypothesis tests for high-dimensional covariance structures
Ishii, Aki; Yata, Kazuyoshi; Aoshima, Makoto
Annals of the Institute of Statistical Mathematics 73: 599 - 622 (2021) Semantic Scholar
-
16.
論説:高次元小標本における統計的仮説検定
青嶋, 誠; 石井, 晶; 矢田和善
数学 73: 360 (2021)
-
17.
高次元におけるDistanceWeighted Discriminationについて
江頭健斗; 矢田和善; 青嶋誠
数理解析研究所講究録 1 (2020)
-
18.
High-dimensional covariance matrix estimation under the SSE model
Konishi, Keisuke; Yata, Kazuyoshi; Aoshima, Makoto
数理解析研究所講究録 11 (2020)
-
19.
Tests for high-dimensional covariance structures under the non-strongly spiked eigenvalue model
Ishii, Aki; Yata, Kazuyoshi; Aoshima, Makoto
数理解析研究所講究録 21 (2020)
-
20.
単一強スパイク固有値モデルにおける高次元平均ベクトルの2標本検定
石井晶; 矢田和善; 青嶋誠
応用統計学 49: 109 (2020)
-
1.
高次元の統計学
青嶋, 誠; 矢田, 和善
共立出版 2019年4月 (ISBN: 9784320112636)
-
41.
Proposing a Low-Rank Approximation Method with Mathematical Guarantees for High-Dimensional Tensor Data
HASEGAWA, Hiroki; YATA, Kazuyoshi; OKADA, Yukihiko; KUNIMATSU, Jun
2024 IEEE International Conference on Big Data (BigData)
-
42.
Contrastive principal component analysis in high dimension low sample size
S.-H., Wang; 矢田, 和善
The 6th International Conference on Econometrics and Statistics 招待有り
-
43.
Asymptotic behaviors of k-means under high dimensional settings
EGASHIRA, Kento; YATA, Kazuyoshi; AOSHIMA, Makoto
The 6th International Conference on Econometrics and Statistics 招待有り
-
44.
Estimation of the strongly spiked eigenstructure in high-dimensional settings
矢田, 和善; ISHII, Aki; AOSHIMA, Makoto
The 6th International Conference on Econometrics and Statistics 招待有り
-
45.
Quadratic classifiers for high-dimensional noisy data
ISHII, Aki; YATA, Kazuyoshi; AOSHIMA, Makoto
The 6th International Conference on Econometrics and Statistics 招待有り
-
46.
Asymptotic properties of kernel k-means under high dimensional settings
EGASHIRA, Kento; YATA, Kazuyoshi; AOSHIMA, Makoto
IMS Asia Pacific Rim Meeting 2024 招待有り
-
47.
Inference on high-dimensional mean vectors by the data transformation technique
YATA, Kazuyoshi; AOSHIMA, Makoto
IMS Asia Pacific Rim Meeting 2024 招待有り
-
48.
Asymptotic properties of kernel k-means for high dimensional data
EGASHIRA, Kento; YATA, Kazuyoshi; AOSHIMA, Makoto
International Symposium on Recent Advances in Theories and Methodologies for Large Complex Data 招待有り
-
49.
強スパイク固有値モデルにおける高次元統計的推測
矢田, 和善
応用統計学会年会特別講演 招待有り
-
50.
Estimation of eigenvectors for linear combinations of high-dimensional covariance matrices and its application
Yata, Kazuyoshi; Ishii, Aki; Aoshima, Makoto
The 5th International Conference on Econometrics and Statistics 招待有り
-
51.
Test for outlier detection by high-dimensional PCA
Nakayama, Yugo; Yata, Kazuyoshi; Aoshima, Makoto
The 5th International Conference on Econometrics and Statistics 招待有り
-
52.
Asymptotic behaviors of hierarchical clustering under high dimensional settings
Egashira, Kento; Yata, Kazuyoshi; Aoshima, Makoto
The 5th International Conference on Econometrics and Statistics 招待有り
-
1. 2024-22378: スクリーニング装置
矢田, 和善
960 total views